10 YEARS OF VISUAL AND CCD PHOTOMETRY OF ASTEROIDS FOR THE MAP    
   
   
       
       SUMMARY    
   
   
  INTRODUCTION    
       
  HISTORY OF THE MAP    
       
  RESULTS OF THE MAP ON OCTOBER 30,2006    
       
  ANALYSES OF THE MAP RESULTS    
       
  THE TOOLS OF THE MAP    
       
  METHODS AND DEVELOPMENT    
       
  VISUAL METHOD    
  USE OF THE CCD MEASURES UP TO 2005    
  DEVELOPMENTS FOR THE INCREASE OF ACCURATE CCD MEASURES    
       
  CONCLUSIONS    
   
   
   
         
INTRODUCTION      
         
   
   
Since 1801, more than 362500 asteroids have been discovered and 145705 of them are numbered at mid-   
December 2006    
   
The observed magnitudes of the minor planets are useful for :     
  the computation of the absolute magnitudes    
  the constitution of the ephemerides    
  the estimation of  the rough diameters of the asteroids    
   
   
Evolution of the magnitude types for the asteroids and their absolute magnitudes    
       
Up to 1985, the absolute magnitude B(1,0) was based on the photographic B band of the UBV system  
The photographic plates were at that time the tool of the observatories    
The magnitudes B(1,0) used then were issued from published lists officialized in 1978    
       
After 1985, there was a change of band for the absolute magnitude renamed H and passing to the V band  
The standard conversion from the B magnitude to V had been made by H = B(1,0) -1,0 mag    
       
   
Actual Formula for the computation of the V magnitudes of the ephemerides :    
Based on the absolute magnitude of an asteroid located at 1 astronomical unit to the Sun and Earth    
Formula adoptes by the IAU commission 20 in November 1985 :    
       
  magnitude = H + 5 * log(r*delta) - 2,5 * log [ (1-G)*phi1 + G*phi2 ]     
  with      
  phi1 = exp[ -3,33*(tan (bêta/2) )0,63]       
  phi2 = exp[ -1,87*(tan (bêta/2) )1,22]       
       
H is the averaged absolute magnitude in the V band, with the solar phase angle = 0°     
G is the slope parameter ( standardized to 0,15 if the G parameter is unknown )    
r and Delta respectively are the heliocentric and geocentric distances    
Phi 1 and Phi 2 are two phase functions      
beta is the angle phase       
       
NB : The formula predicts the observed opposition surge and the non-linear drop off in brightness at large phase 
angles and is valid from 0 <= beta <= 120 degrees    
   
Various remarks :    
The H magnitudes of the numbered asteroids have been used for the first time in the "Ephemerides   
of Minor Planets" of 1988            
                 
Some modifications of these H magnitudes have been made mostly in 1992 and other revisions for the   
last time in 1998              
                 
The asteroids with problems of magnitude are numerous : about 1 on 10 observed objects  
  (estimation based on the total of MAP or pre-MAP objects with regard to the 4500 different objects seen by Harvey)  
                 
                 
Various differences of absolute magnitude have been reported by the visual observers before 1996.   
The most part of the high discrepancies seen before 1998 have been taken in account by the MPC :  
     
TABLE OF OBJECTS WITH A HIGH DISCREPANCY OF ABSOLUTE MAGNITUDE - 1980 TO 1996  
       NAME AND NUMBER  DIFF.   NAME MAG. MAG. MAG. MAG.      
ASTEROID MAG. DATES OBSER- B(1,0) H H H        REMARKS  
    SEEN   VER EMP87 88-91 92-97 1998 to      
( F= fainter or B= brighter than predicted in the annual EMP )   2006      
                       
316 Goberta   1,2 +B 88/11/11 Pilcher 11,5 11,5 9,8 9,8 Correction on EMP92  
473 Nolli   1,0 +F 88/02/10 Harvey - 10,0 12,3 12,3 Correction on EMP92  
1206 Numerowia   1,6 +F 89/10/22 Harvey 12,4 9,5 11,2 11,8 Correction on EMP92  
1212 Francette   2,0 +F 80/02/12 Pilcher 8,0 9,4 9,5 9,54 Correction on EMP87  
    0,8 +F 83/08/09 Fabre              
    2,2 +F 85/10/10 Harvey              
1293 Sonja   1,8 +F 92/11/08 Harvey 15,4 14,0 12,0 12,0 Error on EMP92  
              1,3-1,6 +F 96/08/09 Faure              
1656 Suomi   1,0 +F 87/11/21 Harvey 15,4 13,1 12,4 12,4 Error on EMP87-92  
    1,1 +F 96/02/24 Faure              
1663 Van Den Bos 1,5 +B 90/11/12 Harvey 14,9 13,7 12,2 12,2 Correction on EMP92  
1890 Konoshenkova 1,0 +F 95/12/21 Harvey 12,6 11,2 10,8 10,8 Error on EMP92 ?  
2143 Jimarnold   2,5 +F 97/08/31 Faure 15,3 14,1 11,2 14,3 Correction on EMP98  
2183 Neufang   1,0 +F 90/06/20 Harvey 12,6 11,4 11,5 11,5      
2491 Tvashtri   1,5 +F 87/01/03 Harvey 14,6 13,7 13,7 13,68      
2791 Paradise   1,3 +F 88/01/24 Harvey 13,0 11,5 12,2 11,5      
3578 Carestia   1,8 +F 91/10/04 Faure - 10,5 8,1 11,6 Error on EMP 89/92  
    1,9 +F 91/10/13 Harvey              
    3,0 +F 96/07/22 Garrett         Correction on EMP98  
    3,1 +F 96/09/04 Garrett              
3873 Roddy   1,4 +F 92/12/03 Harvey - 13,1 11,8 12,0 Error on EMP92  
              1,3-1,6 +F 96/06/11 Faure              
4116 Elachi   1,2 +F 94/03/16 Harvey - 13,3 13,0 13,2      
4729 1980 RO2   1,3 +B 90/10/17 Harvey - - 13,1 13,0      
4744 1988 RF5   1,2 +F 91/01/26 Harvey - 11,6 10,9 11,1 Error on EMP92 ?  
5641 Mc Cleese   1,7 +F 95/03/25 Harvey - - 12,7 12,7      
5905 Johnson             1,1-1,4 +F 95/08/02 Harvey - - 13,0 13,2      
                 
                 
Causes of the high discrepancies of H magnitude      
                 
Eventual errors of the photographic magnitude measures which served as basis for the calculation of  
the absolute magnitudes B(1,0) modified after in H magnitudes    
       
New inaccuracies relating to the standard conversion from B(1,0) to H by H = B(1.0) + 1.0 mag, for   
some of the first thousand of numbered asteroids      
   
The H Magnitudes of the new numbered minor planets often computed from magnitudes of different   
color bands, and/or sometimes with a small number of photometric measures, the actual main goal of   
the MPC being to do accurate orbital elements for the legions of new discovered asteroïds    
                 
   
   
         
HISTORY OF THE MAP    
         
   
Late in the year 1996, creation of the "Magnitude Alert Project" ( MAP ) by Lawrence GARRETT from the   
ALPO Minor Planet Section ( Association of Lunar and Planetory Observers ) to do messages of alerts on the   
asteroids suspected to have a real magnitude different from the predicted magnitudes of the ephemerides.  
He was helped by Dr. Richard Binzel in getting the start of the Magnitude Program    
     
As I also had the same wish for the asteroids with magnitude discrepancies, I joined immediately the MAP.    
Soon, we completed the MAP by a program of follow-up of the MAP objects, for the estimation of their true H   
magnitude.    
As a member of AUDE ( Association des Utilisateurs de Détecteurs Electroniques, managed by Dr François COLAS 
as the Chairperson ), I proposed to do measures for the MAP to the other AUDE members     
     
This Observation project then is run by the Minor planet Section ( Prof. Frederick PILCHER as the coordinator   
and Lawrence GARRETT as the acting assistant coordinator ) and by the French AUDE association.     
     
   
The goals of the MAP are then to find the asteroids with errors of H magnitude equal to 0,3 magnitude and 
more, and to follow the MAP objects on many oppositions for a better estimation of the true H magnitude  
                 
For this goal, we must obtain many measures in V or similar to V and made on several oppositions,   
by several observers, to permit STATISTICALLY the elimination of the sources of errors (variability,   
personal deviation and various causes of random errors ).     
     
For that, some measures made during a night on one or some MAP objects always are useful.    
It's an easy task, feasible on a part of night…or between two other types of observations.    
     
     
THE ACTUAL NICHE OF THE MAP ( AMONG THE AMATEURS )    
     
ASTEROIDS < 6 UA OCCULTATIONS     LIGHTCURVES   MAP    
     
DIAM. >  75 KM   Known accurate orbit              
    Sure occult. Sites      
    sûre H mag to 0.1 mag     => out of MAP goals    
       
Diameter    very accurate   no    
0.01 mag H accuracy with help lightcurve Adjustment on    no    
albedo   with help lightcurve the V band to do….   no    
taxonomical type   with help lightcurve   no    
period of rotation     no   yes        sometimes possible  
Light variability     no   yes     seen if high    
visible shapes of object   yes   yes   no    
                         
DIAM. <  75 KM   Orbit less accurate      
    Narrow width of occ.line      
       
0.1 mag H accuracy   not easy difficult adjustment on V band possible  
estimation of diameter   not easy ( faint stars + filters )   possible  
period of rotation   no   yes        sometimes possible  
Light variability   no   yes   seen if high    
visible shapes of object   not easy   fairly good   no    
                 
       
    OBLIGATION TO OBSERVE AGAIN THE OBJECT AT SEVERAL OPPOSITIONS    
     
     
From 1997 to 2002, the observers of 2 associations formed the hard core of the MAP observers :     
  The visual observers of the ALPO Minor Planet Section    
  The AUDE  observers using CCD cameras    
           
All the 6 most active visual observers are members of the virtual club named "Millenium Club", which contains,   
with Paul COMBA and Tom LASKOWSKY, the eight observers who observed visually MORE THAN 1000     
DIFFERENT ASTEROIDS ... and even several thousands as Roger HARVEY, unmatched world record   
holder with more than 4400 minor planets !    
   
The CCD observers, mainly AUDE members, discovered since 1996 many asteroids , supernovae and     
made numerous lightcurves which permitted the discovery of several binary asteroids, but also many   
variable stars in the images of the followed asteroids ( group "CDR-CDL" managed by Raoul BEHREND )  
     
Some other active CCD observers, notably Americans ( Brian WARNER from the CALL,... ) or Italians ( Sergio   
FOGLIA et al ) also made measures for the MAP, directly or indirectly during their lightcurve work.  
   
   
Since 2003, the activity mainly continued visually    
  The difficulties to obtain accurate CCD magnitudes by the amateurs were the causes of the retirement by   
  a majority of the CCD observers    
  Reorientation from a part of the CCD observers toward the asteroid lightcurves, more easy feasible and   
  more desired by the professional astronomers.    
   
   
  TABLE OF THE MORE ACTIVE MAP OBSERVERS    
  In blue, the visual observers  In gold, the CCD observers ( measures often linked to lightcurves )  
     
OBSERVER  NAME     TOTAL OF MEASURES visual CCD CCD  CCD   
    ( on December 31,2006 ) estimations  Tycho USNO GSC  
       
Gérard FAURE     France 715   667 44 4    
René ROY     France 474     402 72  
Andrew SALTHOUSE     USA 295   295    
Roger HARVEY     USA 293   293    
Jean-Marie LLAPASSET     France 200     132 68  
Pierre ANTONINI     France 174     92 82  
Bernard CHRISTOPHE     France 138     138    
Lawrence GARRETT     USA 122   122    
Claude BOIVIN     Canada 110     78 32  
Stefano SPOSETTI     Swiss 102     26 60 42  
Robin CHASSAGNE     France 91     39 52  
Stephane MORATA/Didier MORATA France 68     43 25  
Raoul BEHREND ( +6 MOWLAVI + REVAZ) Swiss 64     54 10    
Frederick PILCHER     USA 62   62    
Bruno  CHARDONNENS     Swiss 43     43    
Olivier THIZY     France 42     1 41  
Serafino Zani Observatory   Italy 41     41    
(FOGLIA,CREMASHINI, MARINELLO, PIZETTI)        
Emmanuel BROCHARD     France 34     17 17    
Raymond PONCY     France 33     18   15  
Fernand VAN DEN ABBEEL   Belgium 29     14 15    
Dennis CHESNEY     USA 27     27    
Ben HUDGENS     USA 26   26    
Philippe MARTINOLE     France 24     24    
Jean-Gabriel BOSCH     Swiss 23     23    
   
   
   
  CHARACTERISTICS OF THE VISUAL OBSERVERS OF THE MAP, ON DECEMBER 31,2006    
    (by chronological order of entrance in the Millenium Club)    
         
                         
          visual Visual Actual   Obser- Local Total  Total    Honoured    
      Observers activity teles- Country vation limit obser- different by the    
       since cope   site mag. vations asteroids asteroid  
    ......                    
                       
PILCHER 1968 35 cm USA Illinois 14,9 > 4500 1816   (1990) Pilcher    
                       
HARVEY 1974 73 cm USA North 16 > 9500 4493   (4278) Harvey    
          Carolina            
                       
FAURE 1975 20 cm France Isere 16,5 ~ 4600 1974   (8297) Gerardfaure    
                       
SALTHOUSE 1965 44 cm USA New  14,5 18600 1728 not yet  
          Jersey            
                       
HUDGENS 1972 40 cm USA Texas 15,5 > 4500 1980 not yet  
                       
GARRETT 1974 32 cm USA Vermont 15,9 > 2500 1223 not yet  
                       
                         
   
   
  THE SIX MORE ACTIVE VISUAL OBSERVERS IN THE MAP    
   
   
 
   
 
     
 
   
   
   
   
   
   
   
   
   
   
   
          Frederick PILCHER             Roger HARVEY               Gérard FAURE    
   
 
 
 
 
 
   
   
   
   
   
   
   
   
   
   
         Andrew SALTHOUSE              Ben HUDGENS         Lawrence GARRETT    
                
               
               
    THE ASTRONOMICAL EQUIPMENTS USED BY THE VISUAL OBSERVERS    
               
               
 
     
 
       
               
               
               
               
               
    C 14  PILCHER            
               
               
               
               
               
               
  Type of Celestron 14 used by Frederick PILCHER   Dome and 29 inch Telescope from Roger HARVEY  
               
       
 
       
 
             
               
               
               
               
               
               
               
               
               
               
               
               
  Celestron 8 and movable panels used by Gerard FAURE     Andrew SALTHOUSE and his 17 inch telescope  
               
 
     
 
       
               
               
               
               
               
               
               
               
               
               
               
               
               
  Ben HUDGENS and one of his telescopes ( Meade 16 )     Lawrence GARRETT near his 13 inch telescope  
               
               
The five American observers use big telescopes but are hindered by the light pollution of the nearest cities.   
Contrary to all expectations, the small telescope of 20 cm, used under a pure mountain sky, has     
one of the highest limit magnitudes.            
The theoritical limit of magnitude for a telescope is soon exceeded, when the observer can see through an   
eyepiece, under a pure and quiet sky, at more than 20° over the horizon and by high magnification.    
               
               
               
RESULTS OF THE MAP ON OCTOBER 30,2006    
               
   
   
MAP asteroid by group :        
Near Earth Asteroids   42      
Mars-crossers   27      
Hungarias   8      
Cisjovian Belt   332      
Jupiter-trojans and jupiter-crossers   7      
       
asteroids in the MAP Database on October 27,2006 416      
         
         
Distribution of the MAP objects by thousand of numbered asteroids    
         
Groups of numbers Total        
         
1 to 999     43        
1000 to 1999   91 included 3 Mars-crossers      
2000 to 2999   38        
3000 to 3999   20 included 1 NEA and 3 Mars-crossers      
4000 to 4999   37 included 1 NEA and 3 Mars-crossers      
5000 to 5999   43 included 2 NEAs and 5 Mars-crossers      
6000 to 6999   40 included 3 NEAs and 3 Mars-crossers      
7000 to 7999   23 included 1 NEA and 2 Mars-crossers      
8000 to 8999   4 included 1 NEA        
9000 to 9999   6 included 1 NEA        
               
10000 to 19999   28 included 3 NEAs        
20000 to 29999   7 included 3 NEAs and 1 Mars-crossers      
30000 to 39999   4 included 2 NEAs        
40000 to 49999   5 included 3 Mars-crossers      
50000 to 135000   7 included 4 NEAs and 3 Mars-crossers      
Unnumbered   20 included 20 NEAs        
  416        
         
The "bright" objects of the seven first thousands are more accessible by the amateur observers of the MAP  
Beyond the N°10000, NEA and Mars-crossers often are the objects which are possibily visible by the amateurs  
         
         
Distribution of the MAP Asteroids by official H magnitudes :      
         
 absolute Total       NEA Mars-         Hungaria Cisjovian   Jupiter-    
Magnitude       crosser     belt   trojans    
                     
mag H = 8 9           5   4    
mag H = 9 15           14   1    
mag H = 10 53           52   1    
mag H = 11 111     1   1 109        
mag H = 12 113     12   3 98        
mag H = 13 64   1 7   4 51   1    
mag H = 14 11   2 6     3        
mag H = 15 6   5 1              
mag H = 16 9   9                
mag H = 17 5   5                
mag H = 18 8   8                
mag H = 19 3   3                
mag H = 20 7   7                
mag H = 21 2   2                
    416   42 27   8 332   7    
% on Total     10% 6%   2% 80%   2%    
                 
The size of the smallest object of each group decreases with the increasing distance to the Earth  
         
         
Averaged difference of absolute H magnitude in the MAP, by tenth of magnitude :    
         
Averaged.Diff. B/x,x F/x,x Total  %  cumul %   Legend    
     V band Objects Objects    Objects   B/x,x = x,x mag brighter than predicted  
          F/x,x = x,x mag fainter than predicted  
0 mag 5 5 10 2,43% 2,43%   Total = Total objects by averaged diff.  
0,1 mag 15 15 30 7,28% 9,71%   % =   % of the total of MAP objects  
0,2 mag 23 25 48 11,65% 21,36%          
0,3 mag 17 46 63 15,29% 36,65%          
0,4 mag 14 41 55 13,35% 50,00%      
0,5 mag 7 62 69 16,75% 66,75%      
0,6 mag 4 36 40 9,71% 76,46%      
0,7 mag 1 33 34 8,25% 84,71%      
0,8 mag 3 17 20 4,85% 89,56%      
0,9 mag 4 15 19 4,61% 94,17%      
1,0 mag   4 4 0,97% 95,15%      
1,1 mag   4 4 0,97% 96,12%      
1,2 mag   3 3 0,73% 96,84%      
1,3 mag   4 4 0,97% 97,82%      
1,4 mag   3 3 0,73% 98,54%      
1,5 mag   1 1 0,24% 98,79%      
1,6 mag   4 4 0,97% 99,76%      
1,7 mag     0,00% 99,76%      
1,8 mag     0,00% 99,76%      
1,9 mag     0,00% 99,76%      
2 mag     0,00% 99,76%      
2,6 mag   1 1 0,24% 100%      
    93 319 412        
Undefined     4        
  Grand Total 416        
         
         
A majority of MAP objects are fainter than predicted.        
The discrepancy of light is below 0.5 magnitude for 50% of the MAP objects.    
Nevertheless, 5% of the MAP objects have a discrepancy of H magnitude H superior or equal to 1.0   
magnitude and more  !        
         
Actual state of the MAP objects :        
         
Objects put in the MAP because observed with at least 0,3 mag of difference between predicted and   
observed magnitudes        
         
       
Total of oppositions followed for the MAP objects :      
       
  29 MAP objects seen at 3 oppositions and more      
  74 MAP objects seen at 2 oppositions      
  313 MAP objects seen at 1 opposition      
       
       
On October 17,2006, are noted as without possible H magnitude discrepancy in the MAP :    
       
  53 objects with difference < half-variability, following the accumulation of measures    
  6 unnumbered NEA, for which the MPC rectified its H mag to a value similar to the MAP H mag  
  13 objects for which the successive measures brought back the difference < 0,2 or even 0,1 mag  
             
  72 MAP objects, then 17,3% of the total      
       
Like this, this is the indirect proof of the efficiency of the statistical processing of the measures.    
  ( minoration of the impact of the natural variability of the asteroids and of the errors of measures )  
           
  344 other MAP asteroids need more measures !      
  The most urgent goals are the objects with a high discrepancy of magnitude and those 
    observed at less than 3 oppositions      
             
         
The 29 MAP objects observed at least during 3 oppositions :      
         
  Oppositions Mea- Obser- H MPC # MAP H MAP      
      sures vers            
                     
(921) Jovita   6 30 5 10,6 -0,9 9,7      
(1444) Pannonia   5 457 8 9,1 2,6 11,7      
(9117) Aude   5 36 9 12,4 0,7 13,1      
(3904) Honda   4 42 8 11,3 0,7 12,0      
(4483) Petofi (Hungaria) 4 19 6 11,9 1,1 13,0      
(1166) Sakuntala   4 18 4 8,8 1,1 9,9      
(881) Athene   4 12 3 10,3 1,3 11,6      
(1353) Maartje   4 12 2 10,4 -0,4 10,0 new measures to do  
(927) Ratisbona   3 194 8 9,54 -0,1 9,4 out of MAP; diff.H very small  
(1384) Kniertje   3 121 6 9,7 1,7 11,4      
(2829) Bobhope   3 75 2 10,3 -0,3 10,0 out of MAP; diff.H < half-variab.
(552) Sigelinde   3 39 11 9,4 0,2 9,6 out of MAP; diff.H < half-variab.
(775) Lumiere   3 33 2 10,4 -0,2 10,2 out of MAP; diff.H < half-variab.
(5641) Mc Cleese (Mars-cr) 3 15 5 12,7 1,4 14,1      
(612) Veronika   3 15 3 11,2 -0,4 10,8      
(1178) Irmela   3 14 5 11,81 -0,1 11,7 out of MAP; diff.H < half-variab.
(1388) Aphrodite   3 12 4 8,9 1,6 10,5      
(6354) Vangelis   3 12 3 11,8 0,5 12,3      
(4628) Laplace   3 10 4 11,0 0,3 11,3      
(1239) Queteleta   3 10 4 12,5 -0,6 11,9      
(453) Tea   3 10 2 10,6 -0,3 10,3 out of MAP; diff.H < half-variab.
(1296) Andree   3 9 3 10,9 0,4 11,3 all measures of the same value  
(1656) Suomi (Mars-cr) 3 9 3 12,4 0,5 12,9      
(5518) Mariobotta 3 9 4 12,8 0,3 13,1 new measures to do  
(4378) Voigt   3 9 3 11,7 0,1 11,8 out of MAP; diff.H very small  
(3401) Vanphilos (Mars-cr) 3 9 3 12,6 -0,3 12,3 new measures to do  
(3455) Kristensen 3 5 4 12,7 0,8 13,5      
(1909) Alekhin   3 5 2 12,3 0,6 12,9 new measures to do  
(3873) Roddy (Mars-cr) 3 3 3 12,0 1,1 13,1 new measures to do  
           
The objects marked in orange are those for which the discrepancy decreades under 0.3 mag or about equal to the half-variability  
         
         
           
 
A visual evidence of the reality of high discrepancies of magnitude : (921) Jovita !!  
( 0,06 mag of highest half-amplitude for the known lightcurve )  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
           
 
The 20 MAP Objects with the highest discrepancy of magnitude ( difference > 1,0 magnitude ) :  
 
Number, name and group    Diff.H mag  half- Oppo- mea- Obser-   History of Magnitude H  
variability sitions sures vers 88-91 92-97 98 and +  
(maximum)  
(1444) Pannonia 2,6 F 0.29 5 457 8 11.7 11.2 9.7  
(1388) Aphrodite 1,6 F 0.25 3 12 4 12.23 11.7 11.7  
(6823) 1988 ED1 1,6 F? ? 2 5 3 - 10.7 10.7  
(44227) 1998 QP14 1,6 F? ? 1 10 1 - - 17.3  
(6911) Nancygreen (Hungaria) 1,6 F 0.26 2 4 3 - - 13.0  
(1384) Kniertje 1,5 F 0.26 3 121 6 11.29 11.25 11.25  
(5641) Mc Cleese (Mars-cr) 1,4 F 0.06 3 15 5 - 12.0 12.6  
(4440) Tchantches (Hungaria) 1,4 F 0.16 2 141 5 13.20 12.8 12.9  
(5749) 1991 FV 1,4 F ? 2 4 3 - 12.5 12.1  
(881) Athene 1,3 F 0.27 4 12 3 10.27 10.29 10.29  
(5738) Billpickering (Mars-cr) 1,3 F? 0.23 1 7 4 - 11.1 11.3  
(5785) Fulton 1,3 F? ? 1 9 4 - 12.8 12.7  
(8021) Walter 1,3 F? 0.04 1 36 3 - - 12.5  
(4860) Gubbio 1,2 F? 0.43 1 4 2 - 12.0 12.0  
(10772) 1990 YM 1,2 F? 0.65 1 4 1 - - 11.4  
(1166) Sakuntala 1,2 F 0.20 4 18 4 14.2 13.0 13.0  
(3873) Roddy (Mars-cr.) 1,1 F 0.05 3 3 3 11.8 11.7 11.8  
(5026) Martes 1,1 F? ? 1? 3 2 - 11.6 11.6  
(4483) Petofi (Hungaria) 1,1 F 0.49 4 19 6 - 10.8 11.7  
(7663) 1994 RX1 1,1 F? 0.20 1 91 3 - - 12.7  
             
In the table, one can see that the known half-variabilities are nearly all small with regard to the highest     
differences of H magnitudes. These discrepancies of magnitude certainly are mainly due to wrong H magnitudes.
     
The asteroids only observed at one opposition may be would be have a modification of their discrepancy of H   
magnitude.    
   
THE BEST RESULTS OF THE MAP  
 
estimated DIAMETER  
Oppositions Mea- Obser- H MPC # MAP H MAP MPC MAP  
sures vers in Km in Km  
     
(921) Jovita 6 30 5 10,6 -0,9 9,7 33,4 50  
(1444) Pannonia 5 457 8 9,1 2,6 11,7 65 19,9  
(9117) Aude 5 36 9 12,4 0,7 13,1 14,3 10,4  
(3904) Honda 4 42 8 11,3 0,7 12,0 23,7 17,5  
(4483) Petofi (Hungaria) 4 19 6 11,9 1,1 13,0 18,3 11  
(1166) Sakuntala 4 18 4 8,8 1,1 9,9 74,5 45  
(881) Athene 4 12 3 10,3 1,3 11,6 38 20,7  
(1384) Kniertje 3 121 6 9,7 1,7 11,4 50 22,6  
(5641) Mc Cleese (Mars-cr.) 3 15 5 12,7 1,4 14,1 12,5 6,2  
(612) Veronika 3 15 3 11,2 -0,4 10,8 24,8 30,2  
(1388) Aphrodite 3 12 4 8,9 1,6 10,5 71 35  
(6354) Vangelis 3 12 3 11,8 0,5 12,3 19,1 15,1  
(4628) Laplace 3 10 4 11,0 0,3 11,3 27 23,7  
(1239) Queteleta 3 10 4 12,5 -0,6 11,9 13,5 18,3  
(1296) Andree 3 9 3 10,9 0,4 11,3 28,6 23,7  
(1656) Suomi (Mars-cros.) 3 9 3 12,4 0,5 12,9 14,3 11,5  
(3455) Kristensen 3 5 4 12,7 0,8 13,5 12,5 8,5  
 
In this list, 4 objects with an estimated size divided by 2 and 1 object increasing its size by 50 % !!  
A good result acquired by some amateurs !!  
All these asteroids were been observed at 3 oppositions and more and all have a half-variability smaller than   
the H discrepancy.  
       
       
             
ANALYSES OF THE MAP RESULTS    
                       
   
   
analysis N°1 : Comparative analysis between the most used observational means from 1997 to 2006  
           
Types of measures                 
                 
AMv   Visual observations with comparative measures of asteroids        
TMx   CCD Observations made with photometric stars of Loneos, Tycho, Hipparcos    
UMx   CCD Observations made with USNO stars            
GMx   CCD Observations made with stars GSC            
                     
  NB: Some visual measures made with the USNO or the GSC catalogs are not taken in account  
                         
                         
Analysis                  
1) Computation of the averaged difference on H magnitude for each type of measures and each asteroid  
2) Difference by asteroid between the averaged differences of CCD types of measures and the visual ones 
    taken as basis.                  
3) Global averaged difference of the 3 types of CCD observations with regard to the visual one    
4) Computation of the global averaged absolute value of each type ( no sign + or - ) with regard to the visual 
     type.                    
                         
The results of the phases 3 and 4 are summarized in the table below :          
                         
MAP Objects taken in account :                
                     
The 179 objects ( 2158 measures ) observed at once visually and by one of the CDD types    
                     
                   
                   
Results             AMv TMx UMx GMx  
                 
Global averaged difference of H mag for the 179 asteroids    0,32 0,27 0,43 0,51  
Global averaged difference with regard to AMv ( phase 3 )     0,01 0,14 0,17  
Global averaged difference (absolute value) with regard to AMv ( ph.4 ) 0,30 0,27 0,34  
Highest individual difference found with regard to AMv   mag 0,82 1,95 1,53  
                   
Conclusions                   
                   
The small difference between the visual observations and those TMx show the acceptable quality of the  
visual measures                  
                     
The increasing global difference of the AMv and TMx measures toward the UMx and the GMx measures   
show the increasing inaccuracy of the used stellar catalogs.            
                   
The individual analysis of the averaged differences of the TMx show that the errors of magnitude may be   
sometimes high (errors on CCD processing), up to 0,8 magnitude…          
                   
With the experience, yet now, the visual observation is the quickest mean and the less hazardous to   
estimate a magnitude in the V band, for an amateur.               
Visually, an inacurracy of +/-0,2 mag implicate 5 tenths of magnitude, fan already rather large for a  
trained eye        
A result at +/- 0,3 mag is rare for an experienced visual observer          
           
           
Analysis N°2 : Some comparative results betwen the MAP, the Minor Planet Center and Astdys    
         
The website "Asteroids - Dynamic Site (AstTDys)" is specialized in the in the development of proper orbital   
of minor planets ( except orbits too chaotic )    
           
The revised H magnitudes of the numbered asteroids of the file "allnum_pro,htm" from Astdys are updated   
quarterly, thank's to the new astrometrical measures published by the MPC    
         
Only Astdys and the MAP have lists of revised H magnitudes; It's not the case for the MPC    
The 3 entities use the statistical effect to appreciate the averaged H magnitude and to reduce the     
inaccuracies ( measures and variability ).        
               
The H magnitudes from the MPC and Astdys are issued from approximate measures joined to the   
astrometric data from astrometrists. The measures without indication of color band are assimilated to V   
measures. As numerous measures come from R band, some of them are brighter than predicted if they   
are assimilated to V      
In the MAP, we try to take in account only the "sure" measures or eventually corrected by a standard   
deviation ( V-R = + 0.4 by example )    
       
A) Comparisons MPC - MAP :    
The corrections of H magnitudes on the NEA by the MPC on the unnumbered asteroids converged on  
the same results than the MAP for 8 cases :    
         
  H MPC / observations   H MAP   H MPC after adjustment   number Group    
         
1999 RH27 16,5   16,9   16,9     16064 Amor 3    
1998 FX2 18,0   18,3   18,2     20255 Amor 3    
1998 PG 17,0   17,4   17,3     31345 Amor 2    
1998 WS 12,1   12,5   12,5     47035 Mars-crosser  
1998 SS49 16,5   15,8   15,8     85713 Apollo 2    
1998 QR15 18,5   18,1   18,1     - Amor 3    
2000 DO1 20,3   20,4   20,4     - Apollo 1    
2001 SG276 17,4   17,8   17,7   - Amor 1    
                     
         
NB: on 28 other objects for which have been used MPC magnitudes for unnumbered objects during the MAP observations :  
  13 obtained modifications of their MPC H magnitude going towards the MAP H magnitude    
  15 had no modification of their MPC H or moving away from the H MAP        
  ( NB : For the majority of them briefly bright, the MAP obtained only few measures )    
         
Then there are 21 NEA which constitute 58,3% of the total of 41 MAP objects and for which the MPC   
magnitudes joined or approached the H magnitudes from the MAP     
           
           
B) Comparisons of the MAP with the MPC and Astdys :    
     
Global average of the differences between the H magnitudes    
  MAP-Astdys 378 asteroids F/0,20    
  MAP-MPC 416 asteroids F/0,34 higher, because no update by the MPC    
       
Probable reason of the faintness of the MAP magnitudes :     
Lack of color bande type for many R measures joined to the astrometric measures received by the MPC, which after didn't revise   
the H magnitudes of the objects numbered since 1998 !    
The difference with Astdys is fainter, because Astdys periodically rectify the H magnitudes of the MPC     
       
   
analysis N°3 : Some comparative results between the MAP and the professional or efficient observers  
   
During the last 10 years, few H magnitudes of MAP objects processed independently by the specialists in  
photometry.    
   
Some results have been published in 2006, thank's to works on lightcurves :    
   
  Oppos. Measur. # MAP H MPC H MAP revis.H Observatory    
             
(4440) Tchantches (Hungaria) 2 141 1,4/F 12,3 13,7 14,0 Simeis MPB 2006-2   
(4860) Gubbio   1 3 1,2/F 11,8 13,3 13,3 Warner MAP Message 30/10
(5641) Mc Cleese (Mars-crosser) 3 15 1,4/F 12,7 14,1 14,4  Ondrejov MPB 2006-1  
   
Due to the lack of accurate V-R indexes for these asteroids, the V-R indexes have been estimated to  0.4   
magnitude by the concerned observatories    
The real V-R index may differ for the majority of the cisjovian belt members of +/- 0,2 mag    
   
The discrepancy of Gubbio seen at v mag 16.0-16.1 was visually detected in October 2006 with a T20cm,   
then confirmed with a CCD camera by Brian Warner (CALL) !    
                         
                         
analysis N°4 : Impact of the natural variability of the minor planets :    
   
Distribution of 2658 maximum amplitudes of lightcurves on October 15,2006      
    (photometric database G.FAURE of  October 15,2006)        
         
highest   total of   % on cumul. cumulative %  highest half-amplitude     
Amplitude  asteroids    total Total     
         
Less than 0.1 mag 202   8% 202 8%   less than 0.05 mag    
 0.1x mag 609   23% 811 31%   about 0.05 mag    
 0.2x mag 571   21% 1382 52%   about 0.1 mag    
 0.3x mag 423   16% 1805 68%   about 0.15 mag    
 0.4x mag 286   11% 2091 79%   about 0.2 mag    
 0.5x mag 177   7% 2268 85%   about 0.25 mag    
 0.6x mag 118   4% 2386 90%   about 0.3 mag      
 0.7x mag 62   2% 2448 92%   about 0.35 mag    
 0.8x mag 61   2% 2509 94%   about 0.4 mag    
 0.9x mag 53   2% 2562 96%   about 0.45 mag    
 1.0x mag 23   1% 2585 97%   about 0.5 mag    
 1.1x mag 29   1% 2614 98%   about 0.55 mag    
 1.2x mag 13   0% 2627 99%   about 0.6 mag    
 1.3x mag 9   0% 2636 99%   about 0.65 mag    
 1.4x mag 9   0% 2645 100%   about 0.7 mag    
 1.5x mag 3   0% 2648 100%   about 0.75 mag   1 NEA on 3  
 1.6x mag 2   0% 2650 100%   about 0.8 mag   1 NEA on 2  
 1.7x mag 3   0% 2653 100%   about 0.85 mag   2 NEA on 3  
 1.8x mag 0   0% 2653 100%   about 0.9 mag    
 1.9x mag 0   0% 2653 100%   about 0.95 mag    
 2.0 mag and more 5   0% 2658 100%   1 mag and more             all are NEA  
Total   2658   100%      
         
         
The natural variability of the asteroids is not a crucial problem for the MAP because :    
         
1) An asteroid doesn't reach its maximum amplitude of light at each opposition, due to the different   
     vision angle of this body from Earth, from an opposition to the next one..    
     
2) When it's the case, they are at the maximum or the minimum just during a short time, one time by   
    entire rotation, the average of the rotation period of the minor planets being about 9 hours    
     
3) It's only the half-amplitude of light which has a possible impact for the MAP    
    90% of the asteroids with known lightcurves have at most or less than 0.3 magnitude of maximum   
     half-amplitude !    
     
4) For the 10% of asteroids more variable, the maximum half-amplitude of light is problematic only   
    during some oppositions, at the moments of maximums and minimums of light...then in average   
    less than 1 observation made on 6 to 8 !        
         
5) With the computation of the average of all the measures made for an asteroid, the statistical effect   
    reduces or eiminates the impact of mesures made near a maximum or a minimum of light    
         
Then, the natural variability of the asteroids has generally only a small repercussion on the MAP objects !  
       
         
The 200 MAP objects for which a lightcurve is known gives un cumulative percentage of 87% for a maximum   
half-amplitude of 0.3 magnitude. As the very variable objects often are more easy to detect then the others, the  
percentage of half-amplitudes < 0.3 mag is less important for the MAP    
     
   
   
           
THE TOOLS OF THE MAP      
           
     
     
MAP ALERTS Published on e-mails by Lawrence GARRETT for 47 actual receivers who are amateur or   
   professional astronomers          
  They include news on the last MAP measures and calls for observations for the interesting and   
  new MAP objects          
             
    Registration to :   LSGasteroid@msn.com    
         or :   gpmfaure@club-Internet.fr    
         
  Archives loadable to : http://mysite.verizon.net/lgasteroid/    
         
         
MAP DATABASE          
               
It contains all the measures made for the MAP, asteroid by asteroid, with a difference of magnitude   
averaged by night for all the measures made during the concerned night    
Even the rejected measures are present in the database ( waiting for the possible corrections ) but do not contribute  
to the results          
           
The minimum to ensure a difference of H magnitude : 3 observed oppositions with at least the contribution     
by 3 observers, to permit the average of the possible different averaged H magnitudes of the asteroid from Earth,
during successive oppositions, and to smooth out the personal standard deviations from the visual CCD observers.  
           
A Maximum of measures is needed by asteroid to eliminate statistically the variability and the possible various 
errors of the observers          
           
The measures must be made with one of the stellar catalogues and in one light band allowed by the MAP  
         
         
On December 31,2006, the MAP Database contains 430 asteroids, 4927 individual measures on 3411   
lines of averaged measures          
         
  Recapitulative list on HTML page loadable at :           
      http://www.astrosurf.com/map/MAP_DATABASE_recap.htm               
      http://mysite.verizon.net/lgasteroid/        
      http://astrosurf.com/aude/map/MAP_DATABASE_recap.htm      
  Entire Database on zipped Excel file loadable at :           
      http://www.astrosurf.com/map//MAP_DATABASE_measures.zip    
      http://mysite.verizon.net/lgasteroid/        
  http://astrosurf.com/aude/map/MAP_DATABASE_measures.zip    
         
             
         
  PART OF THE MAP DATABASE ON OCTOBER 17,2006 FOR ONE ASTEROID    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
         
TYPES OF MAGNITUDES PRESENT IN THE MAP DATABASE    
 
Magnitude type: The most recommended types of measures are in bold type
AMv  Visual magnitude with asteroid comparison 
GMv  Visual magnitude with GSC comparison [Not used for H revision]
UMv  Visual magnitude with GUIDE USNO-A (mag V GUIDE comparison)
UMr  Unfiltered CCD magnitude with USNO A (mag.R comp.) [used for H revision with R-V = + 0.4 mag]
SMr  Unfiltered CCD mag with USNO-SA (mag R comp.)  [used for H revision with R-V = + 0.4 mag]
GMu  Unfiltered CCD magnitude with GSC comparison [Not used for H revision]
LMu  Unfiltered CCD magnitude with LONEOS (notably PGSC) or LANDOLT comparison (mag V comparison)
SMu  Unfiltered CCD magnitude with GUIDE USNO-SA (mag V GUIDE comparison) 
UMu  Unfiltered CCD magnitude with USNO-A (mag V GUIDE comparison) 
TMu  Unfiltered CCD magnitude with Tycho 2 (mag V comparison) or HIPPARCOS (mag V comparison)
GMR  CCD magnitude with Red filter and GSC (Mag GSC comparison) [Not used for H revision]
UMB  CCD magnitude with Blue filter and USNO-A (mag B comparison) [Not used for H revision]
UMR  CCD mag with Red filter and USNO-A (mag R compar.) [used for H revision with R-V = + 0.4 mag]
LMV  CCD magnitude with V filter and LONEOS ( notably PGSC) or LANDOLT (mag V comparison)
SMV  CCD magnitude with V filter and USNO-SA comparison (Mag.V GUIDE)
TMV  CCD magnitude with V filter and TYCHO 2 comparison or HIPPARCOS (mag V comparison)
UMV  CCD magnitude with V filter and USNO-A comparison (mag V Guide comparison)
 
 
Actual total of measures : visual AMv + UMv 1442 measures  
CCD Tycho 2 + Loneos 129 measures  
CCD USNO 1283 measures  
CCD GSC 490 measures  
 
         
MONTHLY MAP PROGRAM            
           
It includes all the MAP objects visible at more than 4 hours in R.A. from the Sun and at predicted magnitude < V 16,5  
Order of the objects by Right Ascension, from + 4 hours East up to 4 hours west to the Sun      
Useful for the visual Observers who may plan an observational program for all the night      
           
  Example visible at : http://astrosurf.com/map/MAPast.htm      
      http://astrosurf.com/aude/map/MAPast04-05.htm    
  Discontinuous update; To ask for : gpmfaure@club-Internet.fr      
           
           
LISTS OF CONJUNCTIONS LONEOS-MAP            
           
Made by Bernard GUILLAUD-SAUMUR o the AAAA (Association des Astronomes Amateurs d'Auvergne),     
     
Conjunction lists at less than 15' between the numbered asteroids or those of MAP with one of the   
34000 stars of the LONEOS catalog ( managed by Brian SKIFF)    
   
1) List by chronological order : list of asteroids in conjonction "Loneos", night after night    
   
2) List by increasing N° of asteroid : list of monthly conjunctions to locate the best nights for the following of a  
    chosen asteroid    
   
Advantages mainly for the CCD Observers who will do image together asteroids and reference stars  
The conjunctions between LONEOS stars and MAP asteroids already are rare. Those between stars and minor  
planets of the same magnitude are more rare, hence the exceptional use by the visual observers    
     
Possibilities to predict in advance for a precise night the following of an asteroid lightcurve and/or the obtaining of   
measures of accurate measures permitting the verification or the modification of a possible erroneous H magnitude  
       
       
  Lists loadable at : http://www.astrobgs.dyndns.org/astro/MAP/index.htm    
    or by link on : http://astrosurf.com/map    
    http://astrosurf.com/aude/map/index.htm    
       
NB: The conjunctions beyond some months are subject to increasing inaccuracies, due to the use of the orbital  
elements of the files "MPCORB" from the MPC and then only are indicative    
   
 
EXAMPLE OF CONJUNCTIONS "LONEOS - MAP" LISTS BY CHRONOLOGICAL ORDER  
 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
             
METHODS AND DEVELOPMENT      
             
   
   
VISUAL METHOD      
       
VERY FEW stellar references => Obligation to compare the asteroid magnitudes between them    
       
Basic conditions :    
   
Observations through a sky acceptable, without Moon and not too polluted by human lights    
    or compensate by a big diameter    
         
Always the use of the same telescope   Minimum 150mm, under a pure and black sky  
    At least real instrumental limit +14.5-15.0    
         
Always the use of the same powerful eyepiece to obtain always the same light power    
    for a maximum darkening of the sky    
    NB: but let Keep a sufficient field and sharp stars  
     
Acquire a good experience in the brightness comparison of asteroids distant the ones from the others  
         
Learn to "gauge the weight" of the light for the 3 last limit magnitudes of the telescope    
  These are those for which the difficulty of observation increases from tenth to tenth of magnitude.  
  Learn to estimate a magnitude by its averaged difficulty of visual observation with his telescope and   
  the useful eyepiece used continuously          
   
   
Observation method    
Préparation :    
Choose asteroids if possible successive in R.A. and spreading in predicted V magnitudes, for more   
easily comparisons of magnitude    
NB: Avoid to choose objects too different in altitude over the horizon, or take in account a difference of     
       magnitude for the estimation of the observed magnitude     
     
Choose asteroids enclosed by stars nor too bright ( glare ), nor too faint ( difficulties to locate and to plot   
both the faint stars and the asteroid )    
   
Prepare star charts for the location of the asteroid and eventually note the known accurate magnitudes   
of the neighbouring stars ( rare...)    
   
See, if possible, at the beginning of the observations, an area of faint stars with accurate V magnitudes  
to estimate the limit magnitude limite for the night    
     
     
Observations :    
Note the difficulty of observation for the object : "visible directly", "visible slightly indirectly", "rather  
indirectly", "well enough indirectly", "well indirectly", "very indirectly","fugitive", "very fugitive, etc...  
     
Estimate the magnitude of the object by the estimate brightness    
Indispensable experience with always the same telescope and with the same powerful eyepiece    
   
Indicate the eventual uncertainty of magnitude ( +/- 0,1 in general, +/- 0,2 mag for the contentious cases )  
     
Note the comparisons of brightness between the objects : "asteroid x < asteroid y   of 0,x mag"        
      or    "asteroid x = asteroid z", etc...    
     
Verify imperatively the motion of the object ( ~ 1 hour later for a cisjovian object ) and do if possible a   
second measure of magnitude    
     
   
Subsequent analysis :    
In the report of observations, used also as Analysis table, classify the asteroids by increasing V     
magnitude predicted by the ephemerides    
   
Recopy for each asteroid all the "photometric data" noted during the observations :    
  - precise hours of observations    
  - estimated magnitude or range of estimation  
  - level of difficulties to see the object    
  - comparisons of brightness with other asteroids  
   
Compare all the data and determinate the final visual magnitude(s) of each asteroid,     
   - by beginning by the objects observed at the predicted magnitude  
   - by determining at the end the more contentious cases    
     
NB: eventually take in account the great difference of elevation on the horizon for an object    
        The eventual incertainty must be given ( +/- 0,1 mag in general, +/- 0,2 mag for the contentious cases )  
   
The discrepancies between the observed magnitudes and the magnitudes of ephemerides indicate the   
MAP difference ( x,xx mag brighter "B/x.xx" or fainter "F/x.xx" than predicted )    
     
   
REPORT OF VISUAL OBSERVATIONS DURING THE NIGHT OF OCTOBER 26-27, 2006  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
   
   
USE OF THE CCD MEASURES UP TO 2005      
   
Few accurate reference stars    
Calibration on the V band not easy...    
     
   
No particular method given by the MAP, due to the existence of a great number of softwares and CCD   
cameras    
     
Responsibility of each observer to give :     
  The precise date and hour of observation ( hour and tenths of hour on 5 positions )    
  The magnitude type, among those used by the MAP    
  The measure of magnitude itself, with a precision of one tenth of magnitude    
  The eventual incertainty of the magnitude    
   
Stellar References to use :    
  In first :  the LONEOS catalog ( including the Landolt, the GSPC and various photometric data )  
  In second :   the TYCHO 2 catalog ( by using the stars nor too bright, nor too faint, under the mag V10,5 )
  Otherwise : the USNO SA2 including yellow stars of magnitudes 11 to 16 (inaccuracy ~0,25 mag)  
       the USNO A-2 less sure, but the less inaccurate catalog among those covering all the sky
     
NB : The GSC catalog was quickly rejected, because more inaccurate than the USNO ( about 0,5 mag )  
        The MAP database contains many GSC measures which sometimes are near GPSC stars. Then, some of   
         them certainly would be correct for the computation of the H magnitudes of the asteroids. Nevertheless,   
         the analysis of each case should be made    
     
   
     Catalogues of stellar magnitudes actually used :      
                 
       Name of    Year of Total of  Limit photometric       Remarks  
     Catalog issue   included stars mag stellar mag. inaccuracy        
                       
Landolt 1982 526 11,5 to 16 BVRI references    also included in Loneos  
GSPC 1988 and + ~8900 V 9 to 15 0,05 to 0,1 mag (faint stars) also included in Loneos  
GSC 2.1 1989 and + 19 millions V 14 to 16 >0,5 mag, to 1 mag and +    
USNO-A2 1996/1998 526 millions B and R 19 >0,25 mag, up to -20°  >0,5 mag, more on south  
USNO-SA 1996/1998 55 millions B and R 19 <0,25 magnitude   stars of solar type selection   
GUIDE + USNO 1996 et + 526 millions B,V,R 19 <0,25 to > 0,5 mag, mag V calculated by Guide  
LONEOS 1998/2003 33924 11 to 22 BVRI references      
UCAC 1 2000 27 millions R 16 > 0,3 mag   Southern stars    
TYCHO 2  2000 2,5 millions V 11 to 12 0,013 to 0,1 mag (faint stars)    
USNO-B 2003 1,04 billion V 21    0,3 mag   downlable on internet  
Calsberg Merid.Cat. 2005 95,9 millions r  9 to 17 0,025 to 0,18 mag (faint st.) - 30 to + 50° of declination  
                         
   
   
In 2001, a great number of unfiltered CCD measures made near the R band were rectified by treating  
their averaged difference of H mag with the standard deviation of V-R = +0,4 mag  usually admitted in the   
astronomical community    
Concurrently, the use of the Tycho catalog increased slowly, with CCD measures more accurate.   
     
   
   
DEVELOPMENTS FOR THE INCREASE OF ACCURATE CCD MEASURES    
     
   
Development N°1    
     
At the beginning of 2006, thanks to the efficient computer help from Bernard GUILLAUD-SAUMUR of   
the AAAA association, creation of the :     
  "lists of conjunctions between LONEOS stars and the MAP objects",     
  including also many "standard asteroids" ( very faint variability and sure H mag )    
     
   
Important advantages of these lists :    
Possibility to take images including both MAP asteroids and LONEOS stars rather than to do     
separately images of asteroids and Loneos stars    
     
Chronological lists :    
possibility to know for a precise night what will be the numbered asteroids or the MAP objects which   
will be in conjunction with Loneos stars, at less than 15'    
     
Lists by increasing number of asteroids    
possibility to search an eventual conjunction between a specific object and LONEOS stars in a month  
or the next ones.    
   
   
Evolution N°2    
     
Statement of failure for the methods of V measures proposed since 10 years ( methods nevertheless   
efficient for the professional astronomers and their equipment ), by the small number of measures   
generated by the amateurs.    
         
1) Great difficulties with the amateur equipment to obtain many V measures :    
  "Admited" methods too purist, too much and difficult to implement them for an amateur    
  Obligation to use fillters absorbing too light    
  Very few reference stars in the asteroid images made by observers    
  Possible failuie causes are numerous ( instrument, calibration of CCD cameras, softwares, etc.. )   
  Lack of time to do numerous and delicate handlings for an amateur during the starry nights which     
  frequently are rare    
       
2) Too high requirements by the astronomical community for the level of accuracy and for methods   
     often restrictive :        
  Due to the emergence of the amateur CCD camera judged wrongly too suited to obtain an easy accuracy  
  Due to the rejection of the intermediary methods, less acurate, but more effective in results    
       
3)  During these last ten years, the fashion was not the reliability of the asteroid H magnitudes :    
  The possible discoveries of asteroids and SN by the the amateurs were more exciting      
  There was a desire to steer the amateurs towards the astrometry, before the start of the automatic   
  observatories, as LINEAR, LONEOS, etc...        
  A later reorientation since 2000 was made towards the making of lightcurves, domain judged more   
  interesting by the professional astronomers and more easy to do only by differential magnitude measures.  
            
4) The MPC was very occupied in doing the increasing number of orbital elements of discovered comet   
     and asteroids        
  The computation of orbits rightly is the main goal of the MPC. The accuracy of magnitudes then has a   
  secondary importance      
  The interest on the accuracy of the H magnitudes then had no real craze among the observers    
       
       
In conclusion, the professional observatories with their expensive material have no time to do this type   
of basic but important task. Then, it is necessary to permit the amateurs to do this task with methods   
adapted to their real possibilities      
         
       
POSSIBLE ORIENTATIONS FOR THE MAP OBSERVERS    
         
After 10 years of inefficiency of the purist methods "imposed" on the amateurs, it is necessary to test   
other alternative methods which would permit more results, with an accuracy approaching the tenth of   
magnitude        
       
For the visual observers, the increase of the personal observations by the CCD imagery    
       
Numerous MAP objects with a high discrepancy of magnitude need new observations on successive   
oppositions. Then it is necessary to find simple methods getting closer to the visual ones    
       
The possibility to compensate the departure of the first CCD observers in the MAP by doing the two   
types of measures        
         
       
IMPLEMENTATION OF THESE ORIENTATIONS    
       
1) Use the amateur means : economy softwares, sure catalogues and material without filters    
     
2) Loss a minimum of time for the imagery procedures, apart from those strictly necessary, notably  
    to increase the number of MAP targets during a night of observations    
     
3) Find simple methods of measures and of processes getting closer to the visual ones ( 1 to 2 hours   
    after observations, and computerizable )    
     
4) Do not go to an academic method, nor to go to a too high accuracy which would reduce the number of   
     the obtained measures    
     
5) Find tactics permitting to ELIMINATE some causes of difficulties for the obtaining of magnitude   
    measures :    
       
  a) by searching what are the asteroids close to sure reference stars, rather than the inverse  
   (elimination of the complementary imaging of distant reference stars)  
         
  b) by imaging together the asteroids and the reference stars    
       (elimination of various problems of type airmass, different extinction )  
           
  c) by doing preliminary tests on some objects with sure H magnitudes and half-amplitude of   
      variability < 0,08 mag      
       (utilisation of a standard adjustement characteristic of the used CCD camera for the index R-"r")
        for the index R-"r")    
       
  d) by finding simple analyses of measures, which would be after computerized    
  ( use of conversion tables for the stellar indexes B-V to V-R )    
  ( building up of a list of real V-R indexes of minor planets from professional   
    articles and reviews )    
       
 
Main elements which normally permit to obtain an unfiltered CCD measure equivalent to V  
(for stars and asteroids present in the same image)  
 
Mag r  + +/- +/- + + +/- +/- =known +/- = Real  
CCD Index V-R differ. Diff.  Extinc- Airmass no Flat various  Mag V Diff. V Mag  
star star R-r USNO tion     differ. Tycho 2  Tycho 2 star  
 
 
sure V mag of asteroid = Mag r   + +/- +/- = sure +/- = Real  
CCD Index V-R differ. various mag V Diff. V Mag  
asteroid asteroid R-r differ. base Tycho 2 asteroid  
    asteroid star  Tycho 2      
 
 
       
POSSIBLE METHOD IN PROGRESS        
             
Image an asteroid near a star HIPPARCOS, TYCHO ou LONEOS with a sure magnitude, if possible yellow, then   
after the observation :            
             
1) measure the unfiltered "r" magnitude of the sure reference star, with the Astrometrica software anf the USNO-A2  
    catalog     ( important choice of the "Aperture radius" surrounding the star )    
             
2) measure the "r" magnitude of the asteroid, with the Astrometrica software and the USNO-A2 catalog    
  ( same Aperture radius than the star )    
             
3) calculate for the star the difference between R magnitude of Tycho 2 and the unfiltered "r" magnitude obtained by Astrometrica
     by Astrometrica              
             
4) apply the same difference found to rectify the "r" magnitude of the star        
             
5) apply the standard deviation "R - r CCD camera" of the spectral type of the star, to the asteroid      
             
6) apply the standard type "R - r CCD camera" of the asteroid to rectify its "R"        
             
7) Apply the V-R index of the asteroid (or the standard V-R = 0.4) to obtain the pseudo-"V" final magnitude of the  
    asteroid        
       
       
FIRST TESTS MADE (Differences R-r of stars and asteroids not yet processed)    
           
Images made on the "standard" asteroids with very low variability and with a sure H magnitude    
  ( substracted blacks and flats on images of ordinary quality )    
           
       
AVERAGE OF THE DIFFERENCES "REAL - EPHEMERIDES" MAGNITUDE MEASURES BY ASTEROID     
   
For each imaged asteroid, the average of the differences "Real  - Ephemerides" of V magnitude ( all   
measures taken in account ), resulting by the comparison with each star (sure in magnitude) is put in the   
column of the spectral type of the star    
     
   
  Legend :    
  differences of asteroid measures < or ~ 0,1 mag        
  differences of asteroid measures < or ~ 0,2 mag      
  differences of asteroid measures > 0,2 mag            
       
  ASTEROID 1/2 VAR. real STARS A F G K  R    
  STANDARD MAX. V-R V-R min = -0,030 0,181 0,345 0,538 0,910    
  (sure H / var < 0.16)     V-R max = 0,168 0,338 0,507 0,893 2,31    
  (1) Ceres   0,02 0,41 moyenne     0,08        
          moyenne     -0,02        
          moyenne     -0,07        
  (2) Pallas   0,08 0,36 moyenne   0,11 -0,12 -0,18      
          moyenne   -0,01          
  (14) Irene   0,06 0,55 moyenne     0,10 -0,65      
  (14) Irene N°2 0,06 0,55 moyenne     0,17        
  (57) Mnemosyne 0,06 0,54 moyenne   0,14 -0,19 -0,05      
  (75) Eurydike 0,08 0,43 moyenne       0,04      
  (91) Aegina 0,08 0,45 moyenne       -0,85 -1,26    
  (96) Aegle   0,06 0,51 moyenne   0,05   -0,24      
  (101) Helena 0,07 0,57 moyenne   0,03 0,14 -0,84      
          moyenne   0,11          
  (105) Artemis 0,08 0,40 moyenne       -0,08      
  (109) Felicitas 0,03 0,41 moyenne   -0,06          
  (142) Polana 0,06 0,36 moyenne   -0,39   -0,42      
  (409) Aspasia 0,07 0,44 moyenne   -0,02          
  (409) Aspasia N°2 0,07 0,44 moyenne -0,16   -0,38        
  Average by stellar type = -0,16 0,00 -0,03 -0,36 -1,26    
           
           
  Results        
  diff. of measure < ou ~ 0,1 mag = 17 59% of good measures    
  diff. of measure < ou ~ 0,2 mag = 5      
  diff. of measure > 0,2 mag   7 24% of bad measures    
           
Remarks :    
The effect of the difference "R-r" ( not yet treated ) according to the stellar spectral type is visible,   
because the big differences especially are on the K and R stars    
The measure for the A stellar type is isolated and then is not conclusive    
With the exceptions for the asteroids N°57 and N°101, the individual or global "Real-Ephemeride   
differences strech for the faintest to the brightest ones, the CCD camera SBIG ST6 being more focused   
on the red band    
More work is needed on the accuracy of the measures, on the choice of the reference stars and on the   
used data to increase the vision in the detail    
     
 
   
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    The Celestron 8 Fastar and the Sbig ST6 camera used for the tests    
     
     
TESTS AND FUTURE IMPROVEMENTS    
         
Current contacts with Richard MILES, the Chairperson of the British Astronomical Association and a  
specialist in CCD photometry for the amateur equipments    
       
Find the standard deviation by spectral type of star for the SBIG ST6, in the R band    
   
Apply the difference "R-r" to the stars and to the asteroids    
   
Collect sure data concerning the real V-R color indexes of the asteroids and the conversions B-V and V-R  
   
Image again standard asteroids to do better measures and to reduce the differences    
   
Continue to analyse the acquired CCD measures for the detection of the frequent causes of errors  
       
   
   
         
          CONCLUSIONS        
         
   
   
It is necessary to observe the objects with magnitude discrepancies x times on x oppositions to reach   
the sufficient number of oppositions and measures ( through the individual measures or the lightcurves ) pour 
permitting the validity of an averaged H magnitude. Then the task is gigantic !    
       
The visual observers actually are too little numerous and those using CCD cameras almost non-existant  
Then, the MAP needs new volunteers for the increase the number of the visual and CCD measures !  
       
       
For these future goals, the actions seem to be :    
       
 - make the visual observation and its creditable results known    
       
 - finalize a simple method to obtain amateur unfiltered CCD measures permitting the obtaining of results   
   similar to the V band and reliable to at least 0,1 mag     
     
 - find the response deviation of the CCD cameras in relation to the V and R bands    
     
 - Find volunteers with a different CCD equipment to do tests and measures    
     
  - Collect sure data on the real V-R color indexes of the asteroids and the conversions B-V and V-R  
     
 - Continue to analyze the CCD measures to increase their accuracy    
     
 - Publish the MAP results and analyzes with the hope that one day the MPC may include our data and   
   rectify the erroneous H magnitudes of the numbered minor planets    
     
     
Thank you for the interest in this article and in the MAP.     
Thank you also for all the eventual good ideas and the futures willingnesses !    
Thank you at last to Lawrence GARRETT for his revision of this article and to Richard MILES for his   
advices on the CCD tests made in the MAP    
     
SEE YOU SOON MAY BE AMONG THE MAP MEMBERS ....    
   
Gérard FAURE    
     
     
     
VARIOUS LINKS    
   
Gérard FAURE     mail adress gpmfaure@club-Internet.fr    
Files of analyses            
               
Lawrence GARRETT   mail adress LSGasteroid@msn.com    
MAP Alerts              
               
AUDE - MAP Page on the website   http://astrosurf.com/map/    
MAP Database, Photometric Base (data December 2006) + various records on asteroids    
      http://astrosurf.com/aude/map/index.htm    
               
MAP site web         http://mysite.verizon.net/lgasteroid/    
MAP Database and photometric list (data December 2006)    
           
ALPO Minor Planet Section site web   http://www.lpl.arizona.edu/~rhill/alpo/minplan.html  
MAP Database and photometric list (data December 2006)    
           
Bernard GUILLAUD-SAUMUR    http://www.astrobgs.dyndns.org/astro/MAP/index.htm  
Conjunctions "numbered asteroids - LONEOS stars"    
         
Asteroids - Dynamic Site (AstTDys)   http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo  
     
Minor Planet Center      
MPCORB - downloading     http://cfa-www.harvard.edu/iau/MPCORB.html  
MPCORB - Mirror site in Europ     http://mpcorb.klet.org/