Lyrids


Best Night: April 21-22, with about 10 meteors per hour (with occasional outbursts of 100)
Total Duration of Activity: April 16-22


How to Observe


      The point from where the Lyrid meteors appear to radiate is located east of the constellation Lyra and is referred to as the radiant. The exact location of the radiant in astronomical terms is RA=18.1 hours, DEC=+33 degrees, but the following chart will also help you find it:


(Image produced by the Author using Starry Night 2.0 and Adobe Photoshop 5.0. It represents the view from mid-northern latitudes at about 4:30 a.m. local time around April 22.)

      The Lyrids are visible through most of the night, with the radiant rising around 9 p.m. (local time). It is located high in the morning sky around 4:00 a.m., with an altitude of about 75 degrees. The chart above shows Cygnus, also known as the Northern Cross, and Lyra. Although Cygnus is the more prominent and well-known of the two constellations, Lyra contains the bright star Vega, which outshines all other stars in that area of the sky. To best observe the Lyrids wear appropriate clothing for the weather and lay outside in a reclining lawn chair for best, comfortable viewing. Late in the evening it would be best to lay with your feet pointing towards the east and look straight up. During the morning hours, as the radiant gets higher, you could point your feet towards the north, west, or south and adjust your line of sight to about 50 to 60 degrees above the horizon. It is generally not advised to look directly at the radiant, because meteors will not move much and fainter ones might be missed. When you see a meteor mentally trace it backwards and if you arrive near Lyra it is probably a Lyrid.


History


DISCOVERY

      Interest in this meteor shower was very slow to develop due to the relative infancy of meteor astronomy. A storm of about 700 meteors per hour had been observed by numerous people in the eastern part of the United States during April 19-20, 1803, but no further attention was given to this shower until 1835. That year closely followed the discovery that the Leonids of November were an annual shower, and as astronomers struggled to identify other annual meteor showers, Dominique Francois Jean Arago (1786-1853) conjectured that April 22 might be a date of frequent meteor activity.
      Much of the leg work for confirming Arago's remark should be credited to Edward C. Herrick (New Haven, Connecticut), who, during 1839, not only carried out coordinated observations of this meteor shower, but also collected accounts of the activity in 1803. Herrick also uncovered further appearances on April 9.6, 1095, April 10, 1096, and April 10.6, 1122. His visual observations (made in conjunction with Francis Bradley) proved that weak, but definite, activity was present during 1839, with the radiant for April 19 being RA=273 deg, DECL=+45 deg. Despite this apparent confirmation, the Lyrids were again ignored until April 19-20, 1864, when Professor Alexander Stewart Herschel observed 16 meteors from a radiant of RA=277 deg, DECL=+35 deg. This observation preceded a new wave of interest in meteor showers in general---an interest that again encouraged observations of the Lyrids.
      During 1866, the annual Perseid shower had been linked to periodic comet Swift-Tuttle (1862 III) and the Leonids were linked to the newly discovered periodic comet Tempel-Tuttle (1866 I). As 1867 began, astronomers were still busy seeking further evidence linking meteor showers to comets. In Vienna, Professor Edmond Weiss was busy calculating probable close encounters between Earth and comet orbits. One comet orbit, that of Thatcher (1861 I), was found to come within 0.002 AU of Earth's orbit on April 20. As Weiss searched through various publications for evidence of this shower's presence, he came across several references to observed showers around April 20. Later that same year, Johann Gottfried Galle mathematically confirmed the link between comet Thatcher and the Lyrids and he successfully traced the history of the shower back to March 16, 687 BC.

OBSERVATIONS

      Observations of the Lyrids increased during the late 1860s and early 1870s, and, as has been the case with so many meteor showers, William F. Denning played an important role in the understanding of this shower. By 1885, he had obtained evidence that the radiant of this shower moved about one degree eastward each day. By 1923, the evidence had become so convincing, that Denning published a radiant ephemeris indicating the radiant began at RA=259 deg, DECL=+34 deg on April 10, and eventually arrived at RA=284 deg, DECL=+34 deg on April 30.
      Denning admitted to only having seen Lyrids between April 14 and 26, but was convinced that further, very weak traces of activity might be present outside of that range‹hence, the extended radiant ephemeris. Visual studies have thus far failed to provide convincing evidence of this extended activity; however, during the period of 1961-1965, the Radio Meteor Project, under the directorship of Zdenek Sekanina, detected probable members of this stream up through May 3.
      Aside from the abnormal activity of 1803, the maximum hourly rates have remained relatively consistent from year to year, though there have been other unexpected outbursts. Denning pointed out that in 1849 and 1850, observers in New Haven and India, respectively, noticed "unusual numbers" of meteors on April 20. Denning himself observed a maximum hourly rate of 22 during his observations of 1884, H. N. Russell (Greece) found a rate of 96 on April 21, 1922, Koziro Komaki (Nippon Meteor Society, Japan) saw 112 meteors (most were Lyrids) in 67 minutes on April 22, 1945, and several observers in Florida and Colorado noted rates of 90-100 on April 22, 1982.
      Several observers have attempted to estimate the orbital period of this meteor stream from the visual observations above. Herrick concluded from his historical study of Lyrid activity that the stream possessed an orbital period of 27 years. Based on the activity observed in 1803 and 1850, Denning concluded that the Lyrids possessed an orbital period of 47 years, but his prediction of possible enhanced activity in 1897 was met by rates not exceeding 6 per hour. After the outburst in 1982, many researchers remarked that the period was about 60 years, based on the showers of 1803, 1922 and 1982. Unfortunately none of these suggested orbital periods fit the observations perfectly, and it might be possible that the Lyrid orbit contains several irregularly spaced knots of material that could make it impossible to arrive at an accurate period based on visual observations.
      Using the more precise methods of radar and photographic techniques, several attempts have been made to determine the period of the Lyrid stream. A collection of photographic orbits published by Fred L. Whipple in 1952, revealed two "reliable" Lyrid meteors with periods differing by 300 years! In 1971, Bertil-Anders Lindblad published a Lyrid stream orbit, which had a period of 131 years, that was based on 5 meteors photographed during 1952 and 1953, and, in 1970, Sekanina published a Lyrid stream orbit based on radio meteors which had an average period of 9.58 years.
      The discrepancy in the orbital period of the Lyrids is primarily due to a lack of data. The number of meteors obtained from the major lists of photographic meteors totals 12, with only 6 being considered reliable (and, incidentally, giving a period of 139 years---close to Lindblad's despite sharing only 2 meteors). Comet Thatcher's period of 415 years is probably much more reliable today than the computed orbital period of the Lyrids.
      The Lyrids are known to possess a sharp peak of maximum activity---a feature generally exhibited by meteor streams which are young or not prone to serious planetary perturbations. Since the inclination of the comet's orbit is 79.8 deg and since evidence exists showing activity as long ago as 687 BC, then the latter scenario seems most appropriate. Typically, the time of maximum occurs around solar longitude 31.6 degrees, with other well-documented visual observations falling within the range of 31.4 degrees to 31.7 degrees. The earlier mentioned study of photographic orbits by Lindblad gave a value of 31.6 degrees, while Sekanina's radar study gave 32.0 degrees. All of these tend to indicate a much more pronounced peak of maximum activity than is generally present for other meteor streams.
      In 1969, Keith B. Hindley pointed out that the close agreement of the maximums of both visual and photographic meteors "indicates that there is no evidence which could be interpreted as the result of the action of dispersive forces of the Poynting-Robertson type." As support for this statement, Hindley added that occasional observations extending back to 687 BC indicate there has been little or no motion in this stream's orbital nodes for at least 2600 years!
      The Author generally supports Hindley's view of the great age of the Lyrid stream after noting that, despite a lack of serious planetary perturbations, Lyrid activity is visible every year. Thus, particles within the stream have spread completely around the orbit---though, admittedly, somewhat unevenly. It is, however, curious that such a large difference exists between the determined orbital period of the Lyrids when photographic and radar data are considered. The photographic data indicates a period over 100 years, while the radar data indicates a period of about 10 years. Such a discrepancy can only be explained by either some minor presence of the Poynting-Robertson effect or a serious error in the determination of the radar orbital data.
      Recent studies of the characteristics of the Lyrids, have revealed many interesting features. In 1972, observations by members of the Moscow planetarium during April 16-20, revealed an average magnitude of 3.3. Hindley's analysis revealed an average magnitude of 2.09 in 1969. Norman McLeod III (Florida) revealed an average magnitude of 2.65 for the period of 1960 to 1976, and 2.90 for the period of 1971-1984. The Dutch Meteor Society revealed an average magnitude of 2.77 for 1985. In addition, the percentage of meteors with trains was 15.9, according to several California observers in 1974, 16.4, according to Felix Martinez (Florida) in 1977, and 10.4, according to the Dutch Meteor Society in 1985.
      Although some of the variation in average magnitude can be attributed to observing conditions, several of the observers were under skies with limiting zenithal magnitudes of 6.5, so that the difference could also be due to a mass variation within the stream. Such was suggested by V. Porubcan and J. Stohl in 1983, after analyzing visual observations obtained by observers at Skalnate Pleso Observatory in 1945, 1946, 1947 and 1952. They noted that an abnormally strong maximum of 40 meteors per hour in 1946, was characterized by an increase in the number of fainter stream members. Similarly, the very strong return of 1982 was also characterized by an increase in faint stream members, with the average brightness dropping by almost one full magnitude from what other years typically possess.
      Recent estimates of the shower's normal hourly rate seem to show no noticeable change from what observers were reporting 80-90 years ago, with ZHRs typically between 8 and 15. Recent estimates have been 13.5 in 1969, 17 in 1974, and 13.1 in 1985.
      The duration of this shower is fairly short. Four amateur astronomers from southern California (Alan Devault, Terry Heil, Greg Wetter and Bob Fischer) observed the Lyrids during April 20 to 24, 1974, and concluded that the shower remained above 1/4 its maximum rate for 3.6 days.


C&MS Home  |  Calendar  |  Meteor Information  |  Meteor WWW Links  |  Glossary

If you have any questions, please email me