Contacter l'auteur / Contact the author

Recherche dans ce site / Search in this site

 

Le trou noir

Simulation d'un trou noir primordial traversant le Soleil réalisée avec le superordinateur Pléiades de la NASA. Voir aussi la vidéo. Document Tim Sandstorm/NASA.

Les trous noirs primordiaux

Comme nous l'avons expliqué à propos de la théorie du Big Bang, à l'époque où l'Univers était en train de naître, avant même l'inflation, dans un Univers bien plus petit qu'une particule élémentaire, il devait en théorie déjà exister des trous noirs primordiaux. La plupart ont disparu bien avant les premières nucléosynthèses de l'ère radiative (~100 s après le Big Bang) mais les plus massifs ont pu survivre jusqu'à aujourd'hui. S'ils existent encore, comment peut-on les détecter ?

La durée de vie d'un trou noir étant proportionnelle au cube de sa masse, ceux dont la masse atteignait 1012 kg (l'équivalent d'une montagne ou d'un petit astéroïde) se sont évaporés en moins de 14 milliards d'années sous forme de radiation Hawking et ont disparu dans un ultime éclair extrêment violent de rayonnement gamma. Aujourd'hui seuls survivent les trous noirs primordiaux les plus massifs dont la masse dépasse 1012 kg. Leur taille est d'environ 10-12 mm soit voisine de celle du proton (0.84 femtomètre) ce qui rend leur détection directe impossible.

En revanche, comme l'ont expliqué Michael Kesden de l'Université du Texas et son collègue Shravan Hanasoge dans les "Physical Review Letters" en 2011, il serait possible de détecter le passage d'un trou noir primordial d'au moins 1018 kg (le poids d'un astéroïde mais de la taille d'un atome) à travers le Soleil car selon les simulations, comme on le voit ci-dessus à droite, cela devrait engendrer des oscillations de grandes amplitudes et de hautes fréquences que les moyens des observatoires actuels (par exemple le réseau d'observatoires GONG et les instruments MDI et HMI de SDO) seraient en mesure de détecter. Dans ce contexte, les étoiles deviendraient des détecteurs séismiques de trous noirs primordiaux.

Si la plupart des trous noirs primordiaux sont impossible à localiser, en revanche nous pourrions détecter leur explosion finale. A ce jour, les seules flashes gamma cosmiques détectés ont été émis par des étoiles, par le coeur de galaxies actives (des trous noirs supermassifs) ou des astres inconnus (cf. les FRB et GRB) mais jamais encore par l'évaporation et la mort d'un trou noir primordial. Mais en théorie, il existerait un moyen de les détecter.

Les astronomes pensent généralement que les éléments plus lourds que le fer produits au cours du "processus r" de nucléosynthèse ont été formés soit durant l'explosion des supernovae soit lors de la fusion d'étoiles à neutrons binaires. Mais il est possible qu'un autre mécanisme ait forgé ces éléments lourds parmi lesquels on retrouve le platine, l'or ou l'uranium. Dans un article publié en 2017 dans les "Physical Review Letters", les théoriciens George Fuller, Alex Kusenko et Volodymyr Takhistov de l'UCLA ont montré que les trous noirs primordiaux qui entreraient au contact d'étoiles à neutrons et les détruiraient pourraient également produire ces éléments lourds. Explications.

Selon les calculs des chercheurs, en de rares occasions il est possible qu'une étoile à neutrons capture un trou noir primordial et que celui-ci la dévore littéralement de l'intérieur (alors que normalement un trou noir primordial traverse entièrement une étoile comme le Soleil et la fait seulement vibrer comme on le voit ci-dessus). Ce processus violent éjecterait une partie de la matière neutronique dans l'espace. C'est ensuite que le processus devient intéressant. A mesure que l'étoile est engloutie par le trou noir primordial, son taux de rotation (spin) augmente et elle finit par éjecter de la matière neutronique froide dans l'espace qui en se décompressant s'échauffe et produit des éléments. Selon Fuller, "dans les dernières millisecondes de la destruction de l'étoile à neutrons, la quantité de matière éjectée est suffisante pour expliquer l'abondance observée des éléments lourds". Ce mécanisme pourrait aussi résoudre d'autres questions sans réponses, notamment concernant l'abondance des éléments dans les galaxies, y compris dans la Voie Lactée.

Sachant que ces évènements sont très rares, les astrophysiciens ne comprennent pas pourquoi 10% seulement des galaxies naines sont enrichies en éléments lourds. Mais si on tient compte de la destruction systématique des étoiles à neutrons par les trous noirs primordiaux, le manque d'étoiles à neutrons dans les centres galactiques et dans les galaxies naines devient logique, prédisant que la densité des trous noirs devrait également y être la plus élevée. Mais soyons précis pour les identifier car un trou noir primordial n'est pas un trou noir stellaire (né de l'effondrement d'une étoile) ni un trou noir supermassif (situé au centre des galaxies et autres AGN), chacun se comptant par millions et davantage.

Pour valider cette théorie, les astronomes doivent encore trouver les traces de ce phénomène. On pense naturellement aux sources d'émissions dont l'origine est encore mystérieuse comme les émissions infrarouges miilimétriques qu'on appelle les "kilonova", les sursauts radioélectriques des FRB et les émissions de positrons détectées dans le centre galactique par les satellites X.

Ceci dit, l'existence des trous noirs primordiaux est toute théorique et donc spéculative. Cela ne veut pas dire qu'ils n'existent pas mais à ce jour aucune observation n'a pu confirmer leur existence. En revanche, l'existence des trous noirs stellaires et supermassifs est quasi certaine sans pour autant être confirmée car comme nous l'avons expliqué tout au long de cet article, elle repose comme l'on dit sur un faisceau d'indices concordants qu'aucune autre théorie ne peut aujourd'hui expliquer avec autant de précision.

Le secret d'Uranie

Nous voilà arrivé au terme de notre aventure extragalactique. Aujourd'hui, le modèle unifié des AGN s'accorde parfaitement avec l'hypothèse que ces objets abritent un trou noir supermassif. Mais caché derrière son disque d'accrétion, certaines de ses propriétés sont encore des paramètres cachés sinon inconnus dans les équations qui nous empêchent de lever le voile sur sa réalité entière.

Grâce aux progrès réalisés dans l'instrumentation astronomique, les outils théoriques et les découvertes observationnelles, nous en savons tous les jours un peu plus sur la nature et les propriétés de ces astres très singuliers que sont les trous noirs. Mais malgré des résultats probants et les prédictions de la théorie des supercordes notamment, la détection d'une nouvelle particule inattendue ou la découverte d'un phénomène contredisant les lois de la physique pourrait faire s'écrouler en larmes Uranie, la Muse de l'astronomie et toute la physique sur laquelle elle repose.

Si la chance n'est pas au rendez-vous du chercheur, théoriciens, astrophysiciens et cosmologistes éprouveront de grandes difficultés pour trouver d’autres théorie pouvant expliquer le comportement très capricieux des galaxies à noyau actif, la fin ultime de l'évolution stellaire ou celle de l'Univers. Gageons que l'avenir leur donnera raison. La nature est un livre ouvert que nous devons apprendre à lire.

Pour terminer et en guise de récréation, voici le récit de voyage d'un aventurier hypothétique qui vous permettra de mieux saisir tous les aspects paradoxaux des trous noirs.

Fiction éducative

L'aventurier du trou noir

"En surfant sur le web j'avais déjà eu l'occasion de voir quelques parties de votre site sur les trous noirs, les supercordes, etc., que j'avais trouvées quasiment sans failles.", Jean-Pierre Luminet, CNRS, 3 août 2006.

Pour plus d'informations

Sur ce site

Les trous noirs supermassifs

Le trou noir supermassif de la Voie Lactée (Sgr A*)

Les ondes gravitationnelles

Le trou noir et le principe holographique

La théorie des cordes au secours des trous noirs

Voyage à travers un trou de ver

La théorie des supercordes

Sur Internet

Trous noirs super-massifs, noyaux actifs et quasars (vidéos), F.Comes, Collège de France

45 years of black holes imaging (1972-1988), Jean-Pierre Luminet

Event Horizon Telescope (et les publications)

eLISA, ESA

Les trous noirs, Bruno Navert

Galaxies à noyau actif (PDF), Didier Gilbert s/dir Florence Durret (Mémoire)

Le site de Jean-Pierre Luminet, CNRS

Schwarzschild Spacetime And Black Holes, Markus Hanke

The Kerr spacetime, Markus Hanke

Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar, K.Thorne et al., 2016

The Kerr spacetime: A brief introduction" (PDF), Matt Visser, 2008

Lecture Notes on General Relativity (PDF), Sean M. Carroll, 1997

Event Horizon Telescope (EHT) Initiative, Perimeter Institute

CASA's Relativity and Black hole links (Andrew Hamilton)

Black Hole (journey + encyclopaedia), Hubble site

Black holes, index DMOZ

Black holes - Portals into the Unknown, Thinkquest

Black holes, The Official String Theory Website

Black holes FAQ, NASA/GSFC

Black holes FAQ, CfPA

Black holes, DMATP

Publications de Kip Thorne

FAQ to sci.physics on Black holes by Matt McIrvin

NASA Virtual trip to Black Holes and neutron Stars

Quelques livres (cf. détails dans ma bibliothèque dont la section Astronomie)

Les trous noirs, Elena Ioli, Le Pommier, 2016

Les trous noirs, Matteo Smerlak, PUF-Que sais-je, 4006, 2016

Les trous noirs : A la poursuite de l'invisible, Alain Riazuelo, Vuibert, 2016

Trous noirs, Leonard Susskind, Robert Laffont, 2010/2012; Gallimard-Folio Essais, 2012

Le destin de l'univers. Trous noirs et énergie sombre, Jean-Pierre Luminet, Fayard, 2006/2010; Gallimard-Folio Essais (2 tomes), 2010

La science des trous noirs, Jean-Pierre Lasota, Odile Jacob, 2010

Les trous noirs en pleine lumière, Michel Cassé, Odile Jacob, 2009

Des quasars aux trous noirs, Suzy Collin-Zahn, EDP Sciences, 2009

Relativité générale, George Efstathiou, Michael Hobson et Anthony Lasenby, de boeck, 2009

Sous l'empire des étoiles. Amitié, obsession et trahison dans la quête des trous noirs, Arthur I. Miller, JC. Lattès, 2008

L'Univers dans une coquille de noix, Stephen Hawking, Odile Jacob, 2001

Trous noirs et distorsions du temps, Kip Thorne, Flammarion, 1996; coll.Champs, 2001

Trous noirs et bébés univers et autres essais, Stephen Hawking, Odile Jacob, 2000

Une brève histoire du temps, Stephen Hawking, Flammarion, 1989; J'ai Lu, 2000

Les trous noirs, Jean-Pierre Luminet, Belfond-Sciences, 1987/1989/1998; Le Seuil/Points Sciences, 1992

Le destin des étoiles. Pulsars et trous noirs, George Greenstein, Seuil, 1987

Les trous noirs de l'espace (2 vol.), Pierre Kohler, Beauval, 1981; Famot, 1981

Trous noirs, Isaac Asimov, L'Etincelle, 1978

En anglais

Black Hole, Marcia Bartusiak, Yale University Press, 2015

The Formation and Disruption of Black Hole Jets, s/dir Ioannis Contopoulos, Springer Int'l Publ., 2015

Exploring the Invisible Universe. From Black Holes to Superstrings, B.E. Baaquie, F.H. Willeboordse, World Scientific Publ., 2015

The Cosmic Compendium. Black Holes, Rupert W.Anderson, lulu.com, 2015

Introduction to Black Hole Physics, Valeri P. Frolov et Andrei Zelnikov, Oxford University Press, 2015

Black Holes, J.Hillis Miller/Manuel Asensi, Stanford University Press, 1999

Black Holes and the Universe, Igor Novikov, Canto, 1995

Black Holes. The Membrane Paradigm, Kip Thorne et Robert Price, Yale University Press, 1986

The Mathematical Theory of Black Holes, Subrahmanyan Chandrasekhar, Oxford:Clarendon Press, 1983.

Retour à l'Astrophysique

Page 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -


Back to:

HOME

Copyright & FAQ